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Elasticity Control (Auto-Scaling)

® Elastic Provisioning: allocate resources dynamically in
response to the changes of workload

® Goal: minimize cost while maintaining the desired Service
Level Objectives (SLOs), e.g., latency
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Cloud Storage Services

® Put-Get operations (key-value stores)
® Horizontal scalability

® Replicated

® Load-balancing

Apache Cassandra



Existing Approaches for Elasticity
Control

® Too Simple: Threshold based rules
® Easy to implement for small scale systems
® Reduced accuracy and adaptability
® Too Complex: Control theory, Machine learning, ...

® Requires manual training and tuning of the controller

® Targeting specific services and use cases



Some Challenges

® Nonlinear & Discrete
® 1VM +1VM = Double capacity

® 100VM + 1VM = 1% increase

® Startup Delay

® Stateful services such as storage need to be initialized with data

® Workload Prediction



Working “"Out-of-the-Box" Vision

® Generic

® Easy to integrate into your service
® Self-training

® Adapts to unexpected changes

Pluggable architecture



Monitored parameters

® Workload
® read/write operations
® datasize

® SLO: operation latency

® Other parameters
® Instance size
® Hardware (processor, disks, ...)

® Software & OS version



Overall Controller Architecture

Workload Prediction
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Workload Prediction
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® Depends on the workload patterns

algorithms

Workload (t+1)

® Provide several generic workload prediction algorithms

® Use a “weighted majority algorithm” to evaluate and
select best algorithm for the current workload

® Construct a compound algorithm from a pool of prediction



Workload Prediction

® ARIMA: Autoregressive Integrated Moving Average
model

® Popular approach to time series forecasting
® AR, |, MA Components
° ARIMA(p,d,q)

® ARIMA(0,1,1) is a simple exponential smoothing.

® ARIMA(2,0,0) is a second-order autoregressive model
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Multidimensional Performance

Online Training
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® Find the relation between the
workload and the SLO

® Use Support Vector Machine (SVM)

SLO
Violation

® 3 dimensions (read throughput, write
throughput, data size)



Linear SVM --the labeled data set

® Granularity of the model

® Eachrequestis mapped to a training case with data format x € Rn, where n is the training features,
e.g., read, write, data_size, etc.

® Then, itislabelledy € {3, i.e., SLO_commitment, -1, i.e., SLO_violation} from the collected service
latency

® Training cases are mapped to discretized data plane
® Historical data buffer
® The n most recent training cases are stored in each cell of the discretized data plane
® Confidence level
® Training cases in each cell make a consensus for a global label
Update frequency

® The global label for each cell is updated with a configurable rate



Linear SVM —the model

® Globally labeled cells are the input for the linear SVM

® w'x +b =o0isthe linear separator (plane), given that y. €
{11 _1}

Training Data and Model
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Workload (t+1)

Elasticity Controller

Controller

Updated
System Model

Reads the predicted workload and ;.. sz

other system parameters

Use the system model to make
scaling decisions (add/remove
resources)

® Calculate available capacity for VMs

The system model is continuously
updated to adapt to changes

Keep SLO at the desired level
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Overall Controller Architecture
(Revisisted)

Workload Prediction
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Evaluation

® Private OpenStack Cloud

® VMs with 2 cores, 4GB <::>
ram, 40 GB disk .
® Cassandra key-value <
store
® Workload generated
using YCSB ECY



Instrumentation in Cassandra

CassandraDaemon
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Visualization of data and model training XSSy St
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Visualization of data and model training (projected view)
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Total Throughput (requests/sec)

Workload Prediction and
Weighted Majority Algorithm

Period (Minutes)

....... %------- Best Algorithm —————— Actual Throughput (Cluster-wide)
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0:ARIMA(0,1,1); 1:ARIMA(1,0,0); 2:ARIMA(0,1,0);
3:ARIMA(1,1,0); 4:ARIMA(2,0,0); 5:Reg_Trees



Total Throughput (requests/sec)

Automatic Resource Provisioning
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Performance Evaluation
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Conclusions

Elasticity controller for Cloud storage services
Self-trained multidimensional performance model
Self-tuning workload prediction module
Pluggable modular architecture

Prototype evaluated on Apache Cassandra



