BALM: QoS-Aware Memory Bandwidth Partitioning for Multi-Socket Cloud Nodes

<u>David Gureya</u>^{1,2}, Vladimir Vlassov² and João Barreto¹

July 6, 2021 – SPAA 2021

Workload Consolidation (1/2)

- Widely used to improve resource utilization
 - Multiple workloads are consolidated on the same physical servers

Workload Consolidation (2/2)

Best-Effort Application (BEA)

- Throughput-oriented
 Bandwidth-intensive
 BEAs
- Place pages acrossMemory nodes

Latency-Critical Application (LCA)

QoS requirements

Challenge: Contention for Memory Bandwidth

Best-Effort
Application (BEA)

Problem: QoS-Aware Resource Allocation

 Safeguard the SLO of LCAs while maximizing the throughput of the BEAs

• **Dynamic problem**: resource usage by each application can change at any time

Existing Solutions (1/2)

Solve the problem by partitioning resources

- Recent systems dynamically adjust partitions
 - Heracles [ISCA'15]
 - Parties [ASPLOS'19]
 - Clite [HPCA'20]
 - Caladan [OSDI'20]
- However, existing solutions are tailored to single-socket architectures only

Existing Solutions (2/2)

Disallows cross-socket sharing of memory

CPU 1 CPU 0 **Best-Effort Latency-Critical Application (BEA)** Core 1 **Core N Application (LCA)** LLC LLC Mem. Controller Mem. Controller **Memory Node 1 Memory Node 0 SOCKET 1 SOCKET 0**

Cross-socket QoS-Aware Memory Bandwidth Allocation

Fixing SLO Violation (1/2)

- Possibility 1: Intel Memory Bandwidth Allocation (MBA)
 - Can fix SLO violations almost instantaneously
 - Has a relevant cost on the performance of BEAs

Fixing SLO Violation (2/2)

- Possibility 2: Page Migration (pgm)
 - Can adjust memory bandwidth on a permemory node granularity
 - Page migration is slow but more efficient for BEA

Contributions

- Study the hardware mechanism of Intel for memory bandwidth allocation (MBA) in a multi-socket scenario.
 - MBA unnecessarily reduces the throughput of BEAs by considerable margins

- We propose BALM, a novel QoS-aware memory bandwidth allocation technique for cross-socket sharing of memory in multi-socket architectures.
 - MBA with a novel cross-socket page migration scheme to obtain the best of both mechanisms

Mitigating SLO Violations with BALM

- BALM uses MBA and page migration together as a 2-dimensional allocation mechanism
- BALM fixes SLO violations in 2 steps:
 - Set MBA to its most restrictive level
 - Apply incremental page migration
 - Gradually release MBA throttling
- BALM is expected to be:
 - i. As quick as MBA in fixing SLO violations
 - ii. Converge to valid optimal configuration as page migration

Evaluation: Questions (1/4)

- 1. What performance advantage does BALM bring to memory-intensive BEAs on dual-socket NUMA systems?
- 2. How effective is BALM in fixing SLO violations?

- Compared BALM with:
 - MBA
 - Page migration (pgm)
 - Unshared

Evaluation: Methodology (2/4)

- BEAs: multithreaded benchmarks from PARSEC, SPLASH, NAS
- LCAs: Memcached

- Machines: dual-socket system
 - Intel Xeon Silver 4114 CPU, 2 NUMA nodes, 10 cores per node, supports MBA

Execution Scenario

Socket 0	Socket 1
Memcached (4 threads)	OC/MG/SP/UA (8 threads)

Evaluation: Results (Memcached vs. OC) (3/4)

Evaluation: Results (Memcached vs. all) (4/4)

Conclusion

 SoTA QoS-aware resource allocation systems need to be generalized to allow cross-socket sharing of memory bandwidth

 BALM can safeguard the LCAs with marginal SLO violation windows, while delivering up to 87% throughput gains to bandwidth-intensive BEAs