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Abstract—The pay-as-you-go pricing model and the illusion
of unlimited resources in the Cloud initiate the idea to provision
services elastically. Elastic provisioning of services allocates/de-
allocates resources dynamically in response to the changes of
the workload. It minimizes the service provisioning cost while
maintaining the desired service level objectives (SLOs).

Model-predictive control is often used in building such elas-
ticity controllers that dynamically provision resources. However,
they need to be trained, either online or offline, before making
accurate scaling decisions. The training process involves tedious
and significant amount of work as well as some expertise,
especially when the model has many dimensions and the training
granularity is fine, which is proved to be essential in order to
build an accurate elasticity controller.

In this paper, we present OnlineElastMan, which is a self-
trained proactive elasticity manager for cloud-based storage
services. It automatically trains and evolves itself while serving the
workload. Experiments using OnlineElastMan with Cassandra
indicate that OnlineElastMan continuously improves its provision
accuracy, i.e., minimizing provisioning cost and SLO violations,
under various workload patterns.

Keywords—Elasticity Controller, Cloud Storage, Workload pre-
diction, SLO, Online Training, Time series analysis.

I. INTRODUCTION

Hosting services in the Cloud are becoming more and more
popular due to a set of desired properties provided by the
platform, such as low application setup cost, professional plat-
form maintenance and elastic resource provisioning. Elastically
provisioned services are able to use platform resources on
demand. Specifically, VMs are spawned when they are needed
for handling an increasing workload and removed when the
workload drops. Since users only pay for the resources that
are used to serve their demand, elastic provisioning saves the
cost of hosting services in the Cloud.

On the other hand, services are usually provisioned to
match a certain level of Quality of Service (QoS), which is
usually defined as a set of Service Level Objectives (SLOs)
in Cloud context. Thus, there are two contradictory goals to
be achieved, i.e., saving the provisioning cost and meeting the
SLO, while services are elastically provisioned.

Elastic provisioning is usually conducted automatically by
an elasticity controller, which monitors the system status and
makes corresponding decisions to add or remove resources. An
elasticity controller needs to be trained, either online or offline,
in order to make it smart enough to make such decisions.

Generally, the training process allows the controller to build
up a model that correlates monitored parameters, such as CPU
or incoming workload, to controlled parameters, i.e., the SLO,
which could be, for example, percentile request latency. The
accuracy of the model, directly affects the accuracy of the
elasticity controller, which dominates service provisioning cost
and commitment of the SLO.

It is non-trivial to build an accurate and efficient elasticity
controller. Recent works have been focusing on improving the
accuracy of elasticity controllers by building different control
models with various monitored/controlled metrics [1], [2], [3],
[4], [5], [6]. However, none of the works have considered the
practical usefulness of an elasticity controller, which involves
the following challenges. First, an elasticity controller usually
needs to be tailored according to a specific application. To be
concise, sometimes, it requires complicated instrumentations to
the provisioned application or even not possible to obtain the
metrics that are used to build the control model. Furthermore,
even with all the metrics, it requires tremendous and tedious
works to train the control model. A general training procedure
involves the redeployment and reconfiguration of the appli-
cation and collecting and analyzing data by running various
workloads against various configurations of the application.
Second, the hosting environment of the provisioned application
may change due to some unmonitored factors, for example,
platform interference or background maintenance tasks. Then,
even with well-trained control models, it may not be able to
adjust to these factors and leads to inaccurate control decisions.
Third, it is always too late for the elasticity controller to react
to a workload increase when the workload is already saturating
the application. Thus, we argue that prediction of the workload
is always a compulsory element to an elasticity controller.

In this work, we propose OnlineElastMan, which is a
generic elasticity controller for distributed storage systems.
It excels its peers with its practical aspects, which includes
straightforward obtainable control metrics, automatically on-
line trained control models and embedded generic work-
load prediction module. It makes OnlineElastMan an “out-
of-the-box” elasticity controller, which can be deployed and
adopted by different storage systems without complicated
tailoring/configuring efforts. Specifically, OnlineElastMan re-
quires only monitoring on the two most generic metrics, i.e.,
incoming workload and service latency, which is obtainable
from most of the storage systems without complicated in-
strumentation. Using the monitored metrics, OnlineElastMan
analyzes the workload composition in depth, which includes
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read/write request intensity and data size of the requested item,
which defines the dimensions of a control model. OnlineElast-
Man can easily plug in more interested dimensions if needed.
After fixing the dimensions, a multi-dimensional control model
can be automatically built and trained online while the storage
system is serving requests. After a sufficient amount of warm
up on the control model, OnlineElastMan is able to issue
accurate control decision based on the incoming workload.
Furthermore, the control model continuously improves itself
online to adjust to unknown/unmodeled events of the operat-
ing environment. Additionally, a generic workload prediction
module is also integrated to facilitate the decision making of
OnlineElastMan. It allows OnlineElastMan to scale the storage
system well in advance to prevent SLO violations caused on
workload increase and scaling overhead [5]. Specifically, the
prediction module aggregates multiple prediction algorithms
and chooses the most appropriate prediction algorithm based
on the current workload pattern using a weight majority
selection algorithm. Contributions of the paper are as follows.

e Implementation of an “out-of-the-box™ generic elas-
ticity controller framework, which is easily applicable
to most of the distributed storage systems.

e Integration of an online self-trained control model to
OnlineElastMan, which avoids repetitive and tedious
system reconfiguring and model training.

e  Proposal of a multi-dimensional control model based
on workload characteristics, which proves to have
better control accuracy.

e  Realization of a generic workload prediction module
in OnlineElastMan, which is adjustable to multiple
workload patterns.

e Open-source implementation ' of OnlineElastMan

framework.

II. PROBLEM STATEMENT

There is a large body of work on elasticity controllers
for the Cloud [2], [3], [4], [5], [6]. Most of them focus on
improving the control accuracy of the controller by introducing
novel control techniques and models. However, none of them
tackles the practical issues regarding the deployment and
application of the controllers. We examine the usefulness of an
elasticity controller while deploying it in a Cloud environment.
Specifically, we investigate the configuration steps for an elas-
ticity controller before it starts provision services. Typically, it
involves the following steps to setup an elasticity controller.

1)  Acquire metrics for the elasticity controller from the
provisioned application or the host platform.

2)  Deploy the provisioned application in order to con-
struct a training case for the elasticity controller.

3) Configure the provisioned application according to
the deployment.

4)  Configure and run a specific synthesized workload
against the application.

5)  Collect training data from the training case and train

the control model accordingly.

Ihttps://github.com/gureya/OnlineElasticityManager
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6) Repeat step 2 to 5 until the control model is fully

trained before serving the real workload.

It is intuitively clear that the more metrics considered
in a control model, the more accurate it will be. However,
increasing the metric dimensions of a control model comes
with a significant amount of overhead during the training
phase. Specifically, training a control model with only 3
dimensions results in 27 (3%) training cases when only 3
trials/runs are conducted for each dimension. This means that
step 2 to step 5 needs to be repeated 27 times to train the
control model. Obviously, it is extremely time consuming to
train a control model manually, especially when the model has
many dimensions, which is needed for higher control accuracy.

OnlineElastMan alleviates the training process with on-
line training. Specifically, the model automatically trains and
evolves itself while serving the workload. After a short period
of warm up, the controller is able to provision the underlying
application accurately. Thus, it is no longer needed to manually
and repetitively reconfigure the system in order to train the
model. Furthermore, in order to make OnlineElastMan as
general as possible, its input metrics are easily obtainable from
the application. Specifically, it directly uses the information
in the incoming workload, which does not need application
specific instrumentation, and service latency, which is the most
accurate and direct reflection of QoS and can be easily sampled
from system entry points or proxies.

On the other hand, previous works [5], [2] have demon-
strated that, in order to keep the SLO commitment, a storage
system needs to scale up in advance to tackle with a workload
increase since scaling a storage system involves non-negligible
overhead. Thus, we have made a design choice to integrate
a workload prediction module for OnlineElastMan. Again,
to make it as general as possible, the workload prediction
module is able to produce accurate workload prediction for
various workload patterns. Specifically, it has integrated several
prediction algorithms that are designed to cope with different
time series patterns. The most appropriate prediction algorithm
is chosen online using a weight majority selection algorithm.

III. ONLINEELASTMAN DESIGN

In this section, we present the design of OnlineElastMan
by explaining its three major components, i.e., workload pre-
diction, online model training, and elasticity controller. Fig-
ure 1 presents the architecture of OnlineElastMan. Components
operate concurrently and communicate by message passing.
Briefly, workload prediction module takes input from the
current workload and predicts workload for a near future (the
next control period). Online Model training module updates
the current model by mapping and analyzing the monitored
workload and the performance of the system. Then, the elas-
ticity controller takes the predicted workload and consults
the updated performance model to issue scaling commands
by calling the Cloud API to add or remove servers for the
underlying storage system.

A. Monitored Parameters

Auto-scaling technique requires a monitoring component
that gathers various metrics that reflect the realtime status
of the targeted system at an appropriate granularity (e.g per
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Fig. 1: OnlineElastMan Architecture

second, per minute, per hour). It is essential to review the
metrics that can be obtained from the target system and the
metrics that best reflect the status of the system. To ease the
configuration of OnlineElastMan framework and to make it
as general as possible, we consider the target storage system
as a black box. OnlineElastMan adopts the most general and
direct metrics that dominate the QoS of the targeted storage
system. Specifically, we take the workload, which causes
the variations in those system metrics, directly as the input.
OnlineElastMan requires the workload monitoring to provide
the read/write intensity and the size of the requested data in
the workload in small intervals. The monitored data can be
obtained by sampling the traffic passing through the entry
points, e.g. proxies or load balancers, of the storage system.
The percentile latency, which defines and directly reflects
the QoS, is collected either from entry proxies or the storage
system itself depending on the design and workflows of storage
systems. Then, the collected percentile latency is used to adjust
and improve control decisions/models. In Section IV-Al, we
provide details on how we obtain these metrics in a distributed
storage system, such as, Cassandra [7].

B. Multi-dimensional Online Model

One of the core components in OnlineElastMan is the
multi-dimensional online SML (Statistical Machine Learning)
model. It correlates the input metrics (workload characteristics)
with the SLO (percentile latency). The goal of the model is
to keep the target system operating with the percentile latency
varying only in a small controlled range. It is intuitively clear
that with more provisioned resources (VMs), the system is able
to respond to requests with reduced latency. However, on the
other hand, we would also like to provision as little VMs as
possible to save the provisioning cost. Thus, the controlled
latency range is always desired to be slightly under (just
satisfying) the percentile latency requirement defined in the
SLO to minimize the provisioning cost. We refer this region
to be optimal operational region (OOR), where a system is
not very much over-provisioned but satisfying the SLO.

In order to keep the system operating in the OOR while the
incoming workload is dynamic, an elasticity controller needs
to react to the workload changes and allocating/de-allocating
VMs to the system. Previous works [3], [4], [5], [8] designs
an elasticity controller based on an offline statistical model.
OnlineElastMan builds the model online and continuously
improves/updates the model while serving requests. The online
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training feature frees system administrators from the tedious
offline model training procedure, which includes repetitive
system configurations, system deployments, model updates,
etc., before putting the controller online. Additionally, the
continuous evolving model in OnlineElastMan enables the
system to survive with factors that are not considered in the
model, e.g. platform interference [9], [10].

Specifically, the online model is built with the monitored
parameters mentioned in Section III-A. It classifies whether a
VM is able to operate in the OOR under the current workload,
which breaks down to the intensity of read and write requests
and the requested data size. Ideally, a storage node hosted
in a VM can be either operating under commitment to the
SLO or with violation to the SLO. Therefore, with a given
workload and VM flavor, the classifier model is a line that
separates the plane into two regions, in which the SLO is
either met or violated as shown in Figure 3. Different models
need to be built for different VM flavors and different storage
systems hosted. While building the model, there are several
configurable parameters that affect the accuracy of the model.

Granularity of the model: Since the collected data for
the model can be decimal, it is impossible to analyze the
data with infinite combinations. We group the collected data
with a pre-defined granularity, which makes a two-dimensional
plane to be separated to small squares or a three-dimensional
plane to be separated to small cubes. These squares and cubes
are the groups where data are accumulated and analyzed. The
granularity of data groups can be configured depending on the
memory limits and the precision requirements of the model.

Historical data buffer: For data collected and mapped to
each group, we maintain a historical record for the most recent
n reads and writes.

Confidence level: The historical data in each group is
analyzed to define whether the workload that corresponds to
the data collected in this group violates the SLO or not. For
example, 95% confidence level implies that 95% of all the
Read/write percentile latency sampled satisfy the SLO.

Update frequency: The model updates itself periodically
with a fixed configurable rate. A higher update frequency
allows the model to swiftly adapt to execution environment
changes while a lower update frequency makes the model more
stable and tolerate transient execution environment changes.

1) SVM Binary Classifier: : SVMs have become popular
classification techniques in a wide range of application do-
mains [11]. They provide good performance even in cases of
high-dimensional data and a small set of training data. Figure
2 shows the flow of a classification task using SVM.
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Fig. 3: 2 dimensional SVM performance model

We describe techniques to build the model of OnlineE-
lastMan with SVM. Each instance of the training set contains
a class label and several features or observed variables. The
goal of SVM is to produce a model based on the training set.
More concretely, given a training set of instance-label pairs
(#5,9:), = 1,...,1 where x; € R" and y; € {1,—1}!, the
SVM classification solves the following optimization problem:

mingy |w]®+C Y& M
subject to:
y DT +b)>1-6, i=1,2,....,m ?)
&>0, i=12,....m

After solving, the SVM classifier predicts 1 if w2z +b > 0
and —1 otherwise. The decision boundary is defined by the
following line:

wlz+b=0 3)

Generally, the predicted class can be calculated using the linear
discriminant function:

f@)=wx+b 4)

x refers to a training pattern, w as the weight vector and b as
the bias term. wx refers to the dot product, which calculates the
sum of the products of vector components w;x;. For example,
in case of training set with three features (e.g. z,y, z), the
discriminant function is simply:

f(z) = wix + woy + w3z +b 5)

SVM provides the estimates for wy, wo, w3 and b after training.

Given Equation 3, the SML model is a line (Figure 3) when
only monitoring read/write request intensity in the workload
or a plane (Figure 4a) when another dimension, i.e., data
size, is modeled. Figure 4b is a 2 dimensional projection of
Figure 4a, which shows that different data sizes cause different
separations of the 2 dimensional model space. It indicates that
data size plays an essential role to build an accurate control
model for storage systems. The line/plane separation in the
model represents the maximum workload that a VM can serve
under the specified SLO (percentile latency).
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Online model Training: Using the SVM model training
technique, the performance model is updated periodically
according to the update frequency using the data in the
historical data buffer processed with the confidence level.

We believe that every VM can have significant performance
difference even when they are spawned with the same favor.
This can be caused by the interference from the host plat-
form [9], [10] or background tasks, such as data migration [5].
Thus, individual SML model is built for each VM participating
in the system. They automatically evolve and update continu-
ously while the system is serving workload. Periodically, the
updated SML models for each VM are sent to the elasticity
controller module to make scaling decisions.

C. Elasticity Controller

An elasticity controller makes scaling decisions in config-
urable control periods/intervals to prevent system from oscilla-
tions. When making a scaling decision, the elasticity controller
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collects the aggregation of the input workload of all VMs
(W) and the aggregation of the capacity of all VMs (C). The
capacity of a VM is the maximum workload that it can handle
under the SLO, which is obtained from the multi-dimensional
SML model. The elasticity controller also observes the input
workload (w,) and capacity (c,) for each VM individually to
identify fine-grained SLO violations. Specifically, the capacity
of each VM is calculated by intersecting the plane of its SML
model with a line from the origin that points to the current
workload representation, which is a point corresponding to
read and write workload intensity and the averaged data size.
The capacity of the VM is the intersection point, which repre-
sents the capability to serve workload with specific read/write
request intensity of a specific data size. If the current workload
representation point is beyond the capacity representation point
in the model, the SLO is violated.

The responsibility of an elasticity controller is to keep the
provisioned system operating with commitment to the SLO.
The strictest requirement is that each VM operates with the
commitment to the SLO, which can be denoted by Vi &
N,w; < c;, where N is the complete set of all participating
VMs. However, this is not trivial to achieve without over-
provisioning the system because of the imbalance of workload
distribution. It is challenging to balance workload in storage
systems with respect to each VM. This is because that storage
systems are stateful, i.e., usually each VM is responsible only
for a part of the total data stored. Thus, a specific request
can only be served by a specific set of VMs, which host
the requested data. Given that different storage systems have
different data distribution as well as load balancing strategies
and OnlineElastMan is designed to be a generic framework to
provision storage systems elastically, we choose not to manage
workload/data distribution for provisioned systems. Further-
more, managing data distribution or rebalancing among VMs is
orthogonal to the design goal of OnlineElastMan. Nevertheless,
OnlineElastMan provides/outputs suggestions for workload
distributions to each participating VMs based on their capacity
learnt from our SML models.

In order to tolerant load imbalance among VMs to some
extent, OnlineElastMan introduces an optional tolerance factor
a when computing scaling decisions to prevent too much
over-provisioning. Specifically, a scaling up decision is issued
when the SLO violation ¢, < w, is observed from more
than @ VMs, where o« > 0. When « 0, there is no
tolerance on load imbalance. The number of VMs to add is
calculated individually for each VM and aggregated globally.
wmci:% number of VMs with the same flavor as ¢, is expected
to be added. Thus, when *==f= < (, it represents that
a VM has more capacity than " the incoming workload. We
aggregate results of “=—“= on each VM flavors and ceiling the
aggregated results. When the result on a specific VM flavor is
negative, we do nothing because it is in a scaling up procedure.
When the result on a specific VM flavor is positive, we add
the number of VMs of that flavor accordingly.

For scaling down, there is also a corresponding load
imbalance tolerance factor 3. 3 denotes the over-provisioning
number of VMs in each VM flavor. A scaling down procedure
is triggered by first satisfying that there is no VM that violates
the SLO, which gives Vi € N,w; < c¢;, where N is the
complete set of all participating VMs. Then, the number
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of VMs to de-allocate is calculated through similar process
comparing to scaling up. The aggregated results of *z=c=
on each VM flavors are floored after subtracting f. inst,
the corresponding number of VMs are de-allocated when the
floored results are greater than zero.

When a scaling up/down decision is made, the elasticity
controller interact with Cloud/platform API to request/release
VMs. Where applicable, the elasticity controller also calls the
API to rebalance data to the newly added VMs or to decommis-
sion the VMs that are about to be removed. Adding/removing
VMs to a distributed storage system introduce a significant
amount of data rebalance load in the background. This leads
to fluctuations on sensitive performance measures, such as
percentile latency. Usually, the extra data rebalancing load is
not long lasting. So, this fluctuation can be filtered out in our
SML model with proper setting on the confidence level and
update frequency introduced in Section III-B.

D. Workload Prediction

An optional but essential component of OnlineElastMan is
the workload prediction module. It is always too late to make
a scaling out decision when the workload is already increased
since preparing VMs involve non-negligible overhead, espe-
cially for storage systems, which require data to be migrated
to the newly added VMs. Thus, there is a prediction module
that facilitates OnlineElastMan to make decisions in advance.

Often, there are patterns that can be found in the workload,
such as the diurnal pattern [12]. These patterns become vague
when the workload is distributed to each VM. Thus, we are
not predicting the incoming workload for each VM. Rather,
the workload is predicted for the whole system. Then, it is
proportionally calculated for each VM based on the current
workload portion that is served by the VM. Finally, instead
of using the current incoming workload to make a scaling
decision in the previous section, we are able to use the
predicted workload as the input.

However, even predicting the workload for the whole
system is not trivial since there are many factors that contribute
to the fluctuation of the workload [13]. Some workloads have
repetitive/cyclic pattern, such as diurnal patterns or seasonal
patterns while some other workloads experience exponential
growth over a short period of time, which can be caused by
market campaigns or special offers. Considering that there are
no perfect predictors and different applications’ workloads are
distinct, no single prediction algorithm is general enough to
be suitable for most workloads. Thus, we have studied and
analyzed several prediction algorithms that are designed for
different workload patterns, i.e., the regression trees, first-
order autoregressive, differenced first-order autoregressive,
exponential smoothing, second-order autoregressive and
random walk. Then, a weighted majority algorithm (Sec-
tion III-D3) is used to select the best prediction algorithm.

1) Regression Trees model: Regression trees predict re-
sponses to data and are considered as a variant of decision
trees. They specify the form of the relationship between
predictors and a response. We first build a tree using the time
series data through a process known as recursive partitioning
(Algorithm 1) and then fit the leaves values to the input
predictors like Neural Networks. Particularly, to predict a
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response, we follow the decisions in the tree from the root
node all the way to a leaf node which contains the response.

Algorithm 1: Recursive Partitioning Algorithm

Data: A set of NV data points, z;, 1 = 1,...,n
Result: A regression tree

if termination criterion exist then

Generate Leaf Node and allocate it a Given Value;
Return Leaf Node;

else

Identify Best Splitting test sx;

Generate node t with s*;

Left_branch(t) =

RecursivePartitioning(< x;,y; >: T; = $%);
Right_branch(t) =

RecursivePartitioning(< x;,y; >: T; # $%);
Return Node ¢;

2) ARIMA: Autoregressive moving average (ARMA) is
one of the most widely used approaches to time series fore-
casting. ARMA model is convenient for modelling time series
data which is stationary. In order to handle non-stationary time
series data, ARMA model adopts a differencing component to
help deal with both stationary and non-stationary data. This
class of models with differencing component is referred to as
the autoregressive integrated moving average (ARIMA) model.
Specifically, ARIMA model is made up of autoregressive (AR)
component of lagged observations, a moving average (MA) of
past errors and a differencing component (I) needed to make
a time series to be stationary. The MA component is impacted
by past and current errors while the AR component shows the
recent observations as a function of past observations [14].

In general, an ARIMA model is represented as
ARIMA(p,d,q) model where p is the number of autoregressive
terms (order of AR), d is the number of differences needed for
stationarity, and q is the number of lagged forecast errors in
the prediction equation (order of MA). The following equation
represents a time series expressed in terms of AR(n) model:

Y'(t) = ptaaY(t—1)+aY (t—2)+...4+anY (t—n) (6)

Equation 7 represents a time series expressed in terms of
moving averages of white noise and error terms.

Y (t) = p+ Bre(t — 1) + Boe(t —2) + ... + Bue(t —n) (7)

In OnlineElastMan, apart from regression tree, we have
integrated five models using ARIMA implementations, which
are first-order autoregressive (ARIM A(1,0,0)), differenced
first-order autoregressive (ARIM A(1,1,0)), simple exponen-
tial smoothing (ARIM A(0,1,1)), second-order autoregres-
sive (ARIM A(2,0,0)) and random walk (ARIM A(0, 1, 0)).
In our view, they represent most of the common workload
patterns. For example, the first-order autoregressive model per-
forms well when the workload is stationary and autocorrelated
while, for non-stationary workload, a random walk model
might be suitable. Then, the challenge is to detect and select
the most appropriate prediction model during runtime.
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Fig. 5: Architecture of the workload prediction module

3) The Weighted Majority Algorithm: A Weighted Majority
Algorithm(WMA) is implemented to select the best prediction
model during runtime. It is a machine learning algorithm
that is used to build a combined algorithm from a pool
of algorithms [15]. The algorithm assumes that one of the
known algorithms in the pool will perform well under the
current workload without prior knowledge about the accuracy
of the algorithms. The WMA have many variations suited for
different scenarios including infinite loops, shifting targets and
randomized predictions. We present our WMA implementation
in Algorithm 2. Specifically, the algorithm maintains a list of
weights wi,...,w, for each prediction algorithm. The prediction
result from the most weighted algorithm, based on a weighted
majority vote, is selected and returned.

Algorithm 2: The Weighted Majority Algorithm

1. Initialize the weights wy, ..., w,, of all the prediction
algorithms to a positive weight (1).

2. Return the prediction result of the prediction
algorithm with the highest weight.

3. Compare the predicted value with the real value,
penalize the prediction algorithms, which missed the
prediction more than a predefined tolerance interval n,
by multiplying their weights with a fixed penalize factor
m (0 <m<1).

4. Wait until next prediction interval and go to 2.

The prediction module of OnlineElastMan is shown in
Figure 5. Additional prediction algorithms can be plugged into
the prediction module to handle more workload patterns.

E. Putting Everything Together

OnlineElastMan operates according to the flowchart shown
in Figure 6. The incoming workload is fed to two modules,
i.e., the prediction module and the online training module.
The prediction module utilizes the current workload charac-
teristics to predict the workload in the next control period
using the algorithm described in Section III-D. The online
training module records the current workload composition and
samples the service latency under current workload. Then,
the module trains/updates the performance model with the
update frequency. The actuation is calculated based on the
predicted workload for the next control period using the up-
dated performance model according to the algorithm explained
in Section III-C. Finally, the actuation is carried out on the
Cloud platform that hosts the storage service.
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IV. EVALUATION

We evaluate OnlineElastMan from two aspects. First, we
show the accuracy of the prediction module, which consists of
six prediction algorithms. It directly influences the provision
accuracy of OnlineElastMan since it is an essential input
parameter for the performance model. Then, we present the
evaluation results of OnlineElastMan when it dynamically
provisions a Cassandra cluster with the application of the
online multi-dimensional performance model.

Our evaluation is conducted in a private Cloud, which
runs OpenStack software stack. Our experiments are conducted
on VMs with two virtual cores (2.40GHz), 4GB RAM and
40GB disk size. They are spawned to host storage services or
benchmark clients. OnlineElastMan is configured separately
on one of the VMs. The overview of the evaluation setup is
presented in Figure 7.

A. Evaluation Environment
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1) Underlying Storage System: Cassandra (version 2.0.9) is
deployed as the underlying storage system and provisioned by
OnlineElastMan. Cassandra is chosen because of its popularity
to be used as a scalable backend storage by many companies,
e.g. Facebook. Breifly, Cassandra is a distributed replicated
database, which is organized with distributed hash tables. Since
a Cassandra cluster is organized in a peer to peer fashion,
it achieves linear scalability. Minimum instrumentation is
introduced to Cassandra’s read and write path as shown in
Figure 8. The instrumented library samples and stores service
latency of requests in its repository. OnlineElastMan’s data
collector component periodically, every 5 minutes in our ex-
periments, pulls collected access latencies from the repository
on each Cassandra node. The collected request samples from
each Cassandra node are used by the prediction module and
the online training module of OnlineElastMan as shown in
Figure 6 The Cassandra rebalance API is called to redistribute
data when adding/removing Cassandra nodes.

2) Workload Benchmark: We adopt YCSB (Yahoo! Cloud
System Benchmark) (version 0.1.4) to generate workload
for our Cassandra cluster. We choose YCSB because of its
flexibility to synthesize various workload patterns, including
the varying read/write request intensity and the size of the
data propagated. Specifically, we configure YCSB clients with
the parameters shown in Table 1. In order to generate stable
workload to Cassandra, a fixed request rate (1200 req/s) is set
to each YCSB client hosted on a separate VM. We vary the
total amount of workload generated by adding or removing
VMs that host YCSB clients.

Number of Threads 16
Request Distribution uniform
Record Count 100000

Read Proportion

varied (0.0 - 1.0)

Update Proportion

varied (0.0 - 1.0)

Data size varied (1 - 20) KB
Replication Factor 3
Consi 'y Level level ONE

TABLE I: YCSB configuration

3) Multi-dimensional Performance Model: Our perfor-
mance model is trained automatically when the input workload
varies. OnlineElastMan takes input from the monitored param-
eters as specified in Section III-A. Specifically, the workload
features, including read/write request intensity and request data
size, and the corresponding service latency, obtained from
Cassandra instrumentation, are associated to train the model.
Details on model training is presented in Section III-B.
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In practice, the model starts empty and needs to get
trained online automatically for some time. This is because
that the model is application and platform specific. Thus, it
needs a warm up training phase. According to our experiment
experience, it takes approximately 20 to 30 minutes to train a
performance model from scratch. After warm up, the model
can be used to facilitate the decision making process of the
elasticity controller while serving the workload.

Figure 9 depicts the model built and used in our evalu-
ation. It consists of three input parameters/dimensions, i.e.,
read/write request intensity and the data size. The controlled
parameter is the 99" percentile read latency, which is set
to be 35ms in our case. As shown in the figure, with more
training data, the model (the shaded surface) evolves itself to
a more accurate state. Practically, the performance model is
dynamic and trains/evolves while serving the workload. So,
it can automatically evolves to a more accurate model that
reflects the changes of the operating environment and the
provisioned storage system. To be specific, the model adapts
to unknown/unmodeled factors, such as unknown application
interference or platform maintenance, gradually using more
updated training data. A more accurate model leads to better
provision accuracy when the elasticity controller consults it.

In our experiments, we found out that the rate at which
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the model evolves affects the accuracy of the decisions made
by the controller. The confidence level and update frequency
(as introduced in Section III-B) dictates how fast the model
evolves. Ideally we should have enough confidence about the
status (violate SLO/satisfy SLO) of a data point before its
status changes. Setting the confidence level low and the update
frequency high may result into the model oscillating (unstable
model) while the opposite settings of these two parameters
may delay the evolution of the model. In our experiments, we
set the confidence level as 0.5, i.e., if 50% of all read/write
latency queue samples satisfy the SLO then the corresponding
data point satisfies SLO and vice versa. The update frequency
is set to 5 minute. For applications that have distinct phases of
operations, to prevent frequent retraining, one can maintain a
set of models and dynamically selects the best model for the
current input pattern [16].

B. Evaluation on Workload Prediction

We evaluate the prediction accuracy of the workload
prediction module using a synthetic workload generated by
YCSB. We have synthesized workload with different shapes
of workload increase and decrease regarding the total request
intensity with a fixed read/write ratio. Figure 10 presents the
actual workload generated and the workload predicted by our
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prediction module. In addition, the choice of the dominant pre-
diction algorithm proposed by the weight majority algorithm
is also shown in the figure. As a result, our prediction module
is able to achieve as low as 4.60% on the Mean Absolute
Percentage Error for such a dynamic workload pattern.

C. Evaluation of OnlineElastMan over Cassandra

We set the goal of OnlineElastMan to keep the 99"
percentile of read latency to be 35ms as stated in the SLO. The
evaluation is conducted with control period set to be 5 minutes.
Even the workload of YCSB is configured to be uniform in our
case, we still observe a non-trivial difference on the amount
of workload served from different Cassandra storage VMs. To
make a tradeoff between the uneven workload served on each
VM and preventing over-provisioning, we set the tolerance
factor « = 1 and 8 = 0.5.

As shown in Figure 11, we start the experiment with 3
Cassandra VMs. From 0 to 40 minute, the multi-dimensional
performance model is trained and warmed up. The elasticity
controller starts to function from 40 minute. From 40 to 90
minute, the workload increases gradually. It is observable that
from 40 to 70 minute, the system is over-provisioned, as the
percentile latency is far below the SLO boundary as shown
in Figure 12. This is because that the elasticity controller is
set to operate with a minimum number of 3 VMs, which
corresponds to the replication factor of Cassandra. With the
increasing of workload, the elasticity controller gradually adds
two VMs from 80 minute. Then, the workload experienced a
sharp decrease from 90 minute, but the controller maintains a
minimum of 3 Cassandra VMs. We continue to evaluate the
performance of OnlineElastMan with another two rounds of
workload increase and decrease with different scales (shown
from 150 to 220 minute and from 220 to 360 minute). The
evaluation indicates that OnlineElastMan is able to keep the
99" percentile latency commitment most of the time. On the
other hand, we observe a small amount of SLO violations
under the provisioning of OnlineElastMan. It is because of
the tolerance factor o and (3, which allows us to tolerate some
imbalance of workload distribution to Cassandra nodes.

V. RELATED WORK

A. Practical Approaches

Most of the elasticity controllers available in public Cloud
services and used nowadays in production systems are pol-
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icy based and rely on simple if-then threshold based trig-
gers. Examples of such systems include Amazon Auto Scal-
ing [17], Rightscale [18], and Google Compute Engine Au-
toscaling [19]. The wide adoption of this approach is mainly
due to its simplicity in practice as it doesn’t require pre-training
or expertise to get it up and running. Policy based approaches
are suitable for small-scale systems in which adding/removing
a VM when a threshold is reached (e.g., CPU utilization) is
sufficient to maintain the desired SLO. For larger systems, it
might be non-trivial for users to set the thresholds and the
correct number of VMs to add/remove.

B. Research Approaches

Most of the elasticity controllers, which go beyond a simple
threshold based triggers, require a model of the target system
in order to be able to reason about the status of the system and
decide on control actions needed to improve the system. The
system model is typically trained offline using historical data
and the controller is tuned manually using expert knowledge
of the expected workload patterns and service behavior.

Work in this area focuses on developing advanced models
and novel approaches for elasticy control such as, Elast-
Man [4], SCADS Director [3], scaling HDFS [2], ProRe-
nata [5], and Hubbub-scale [6]. Although achieving very
good results, most of these controllers ignore the practical



aspects of the solution which slowed down the adoption of
such controllers in production systems. For example, SCADS
Director [3] is tailord for a specific storage service with pre-
requisits that are not common in storage systems (fine grained
monitoring and migration of storage buckets). ElastMan [4],
uses two controllers in order to efficiently handle diurnal and
spiky workloads but it requires offline manual training of
both controllers. Lim et al. [2] on scaling Hadoop Distributed
File System (HDFS) adopts CPU utilization, which highly
correlates request latency, for scaling but it relies on the data
migration API integrated in HDFS. ProRenaTa [5] minimizes
the SLO violation during scaling by combining both proactive
and reactive control approaches but it requires a specific
prediction algorithm and the control model needs to be trained
offline. Hubbub-Scale [6] and Augment Scaling [20] argue
that platform interference can mislead an elasticity controller
during its decision making, however, the interference measure-
ment needs the access of many low level metrics, e.g. cache
counters, of the platform.

OnlineElastMan, on the other hand, focuses on the research
of the practical aspects of an elasticity controller. It relies only
on the most generic and obtainable metrics from the system
and alleviates the burden of applying an elasticity controller
in production. Specifically, the auto-training feature of Onli-
neElastMan makes its deployment, model training and con-
figuration effortless. Furthermore, an generic and extendable
prediction model is integrated to provide workload prediction
for various workload patterns.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have designed, implemented and open-
sourced 2 OnlineElastMan, which is an “out-of-the-box” elas-
ticity controller for distributed storage systems. It includes a
self-training multi-dimensional performance model to alleviate
model training efforts and provide better provision accuracy,
a self-tuning prediction module to adjust the prediction to
various workload patterns, and an elasticity controller to cal-
culate and carry out the scaling decisions by analyzing the
inputs from the performance model and the prediction module.
The evaluation results of OnlineElastMan on Cassandra show
that OnlineElastMan is able to provision a Cassandra cluster
efficiently and effectively with respect to the percentile latency
SLO in the showcase experiment.

For future work, the OnlineElastMan framework can be
extended in two directions. First, it would be useful to extend
the control model of OnlineElastMan with comprehensive
metrics, e.g., CPU utilization, network statistics, disk I/Os,
etc. Second, OnlineElastMan is essentially stateless. States are
only preserved and used in the prediction and model training
modules, which can be generated/trained during runtime. Thus,
it is not difficult to decentralize OnlineElastMan for better
scalability and fault tolerance.
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