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Abstract

The recent emergence of novel hardware-based resource parti-
tioning mechanisms has unveiled the opportunity for a new genera-
tion of QoS-aware resource allocation approaches for workload con-
solidation. Still, to the best of our knowledge, existing proposals are,
by design, not tailored to the growing prevalence of multi-socket
systems in contemporary warehouse-scale data centers. We pro-
pose BALM, a QoS-aware memory bandwidth allocation technique
for multi-socket architectures that combines commodity bandwidth
allocation mechanisms with a novel adaptive cross-socket page mi-
gration scheme. Our experimental evaluation with real applications
on a dual-socket machine shows that BALM can overcome the effi-
ciency limitations of state-of-the-art. BALM can ensure marginal
SLO violation windowswhile delivering up to 87% throughput gains
to bandwidth-intensive best-effort applications when compared to
state-of-the-art alternatives.
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1 Introduction

The business models for cloud and data center computing em-
phasize reducing infrastructural costs. One primary way to achieve
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this is through workload consolidation, i.e., by co-locating appli-
cations on the same physical host. Some co-located applications
have quality of service (QoS) requirements, as determined by one
or more service-level objectives (SLOs). These are commonly called
latency-critical applications (LCAs). In contrast, the so-called best-

effort applications (BEAs) have no SLO and are meant to run in
some best-effort fashion that aims to maximize their throughput.

The co-located applications contend for shared resources, such
as network and storage bandwidth, CPU cores, last-level caches
(LLC), and memory. This poses a challenging QoS-aware resource
allocation problem: the shared resources should be allocated in such
a way that safeguards the SLO of the LCAs while maximizing the
throughput of the BEAs. Although this problem is not new, the
recent emergence of novel hardware-based resource partitioning
mechanisms has unveiled the opportunity for a new generation of
QoS-aware resource allocation approaches. One notable example
of such mechanisms is Intel Resource Director Technology’s (RDT)
support for hardware-based memory bandwidth allocation (MBA).
Recent proposals such as PARTIES [3] and CLITE [8] take advantage
of such new mechanisms to enforce QoS-aware resource allocation
with unprecedented effectiveness.

Another technological trend with a significant impact on work-
load consolidation is the growing prevalence of multi-socket sys-
tems in contemporary data centers [9]. Unfortunately, PARTIES
and CLITE, as well as the vast majority of their predecessors, are,
by design, tailored to single-socket architectures only.

This paper advocates that, in order to properly utilize over-
provisioned memory resources in multi-socket hosts, state-of-the-
art QoS-aware resource allocation systems need to be generalized to
allow cross-socket sharing of memory. To achieve that, the low-level
memory bandwidth partitioning mechanisms on which existing
solutions rely need to be redesigned to address the new constraints
of multi-socket architectures.

We propose BALM (memory Bandwidth ALlocation for Multi-
socket), a novel QoS-aware memory bandwidth allocation tech-
nique for cross-socket sharing of memory in multi-socket architec-
tures. The key insight of BALM is to combine commodity band-
width allocation mechanisms originally designed for single-socket
(such as MBA) with a novel adaptive cross-socket page migration
scheme. By doing so, BALM can overcome the limitations of the
original mechanisms when deployed in multi-socket scenarios. We
evaluate BALM by co-locating, in a dual-socket system, a real LCA
(namely, the Memcached key-value store [5]) and different realistic
memory-intensive workloads. Our evaluation shows that BALM
can safeguard the LCAwith marginal SLO violation windows, while
delivering up to 87% throughput gains to bandwidth-intensive BEAs
when compared to state-of-the-art alternatives.
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Figure 1: Impact of co-locating Memcached (LCA) with

Ocean_cp (BEA) on a dual-socket machine (each on its own

socket). Left: tail latency of Memcached for different loads.

Right: Performance of Ocean_cp with different allocation

approaches, where Memcached operates at 80% of max load.

2 Background

Thread packing and clock modulation [4] have been used for
partitioning memory bandwidth in single-socket systems. Recently,
Intel released MBA, which provides per-core control over memory
bandwidth by injecting a delay value to each outgoing LLC request.
The MBA level can be changed from 100% (no throttling) to 10%
in steps of 10%. Although widely-used in single-socket scenarios,
the above-mentioned mechanisms are not tailored to multi-socket
scenarios.

To illustrate why, consider a dual-socket machine, where an
LCA, Memcached [5], running in socket 0 is co-located with a BEA,
Ocean_cp [10], running in socket 1. The LCA places all its pages
locally. Assume its SLO is atmost 1ms of the 99𝑡ℎ percentile of client-
side latency. The BEA is bandwidth-intensive, and, to optimize its
throughput, interleaves its pages across both memory nodes.

Figure 1 shows how the sensitivity of the LCA to the available
local memory bandwidth changes as a function of the LCA load.
The observable peaks are caused by the fact that the BEA has phases
with distinct memory intensities. As long as the LCA runs under
low load, allowing the BEA to also use the LCA’s memory node
does not threaten the LCA’s SLO. Still, as one increases the LCA’s
load, the memory access peaks of the BEA start to interfere with
increasing intensity on the LCA’s performance and, consequently,
yield longer periods where the LCA no longer meets its SLO.

To fix the SLO violation in our example, we might employ MBA
to throttle down the memory demand of the BEA. However, this
comes with a performance penalty for the BEA, since MBA slows
down both its remote accesses and its local accesses. Figure 1 (right)
compares the performance of the BEAwith the lowest value of MBA
set to cure SLO violations, against an unshared alternative, where
the BEA maps its pages locally; and an unmanaged alternative,
where no partitioning mechanisms are used. As expected, unman-

aged achieves higher throughput than MBA but fails to safeguard
the SLO. On the other hand, unshared safeguards the performance
of the LCA, but it uses each socket’s resources sub-optimally.

Migrating pages of the noisy neighbour BEA(s) away from the
memory node where the victim LCA runs can be an alternative
to MBA (or other single-socket mechanisms). A recent proposal,
BWAP [7], has shown that a weighted interleaving approach, where
each memory node holds a specific fraction of the application’s
pages, is typically better than an uniform interleaving – provided the
weights are adequately tuned, considering different factors related

Figure 2: Performance of Ocean_cp colocated with Mem-

cached operating at max load on a dual-socket machine.

Each cell shows the speedup of Ocean_cp over the unshared
approach for different configurations. The arrows denote

the transitions of different mechanisms when fixing SLO vi-

olations: MBA (green), pagemigration (white), BALM (blue).

to the computer architecture and the memory access behavior of
the workload [7]. Although BWAP is not designed for QoS-aware
bandwidth allocation in multi-socket systems, it can be converted
into a memory bandwidth allocation mechanism.

In contrast to MBA, page migration is able to adjust memory
access demand on a per-memory node granularity. Hence, upon
an SLO violation, in theory there is a weighted page interleaving
of the BEA that reduces the access demand only on the saturated
memory node, as needed to fix the SLO violation, while providing
throughput gains to the BEAs. This is evident when, in Figure 1,
we compare the throughput that page migration can attain when
compared to MBA. However, page migration’s latency is higher
than that of MBA by many orders of magnitude. Such latency
implies prohibitively long SLO violation windows. For this reason,
page migration is unsuitable to QoS-aware memory bandwidth
allocation, if used as a stand-alone mechanism.

3 BALM

We propose BALM, a novel approach to QoS-aware memory
bandwidth allocation in multi-socket hosts. While the general ap-
proach of BALM is easily generalized to multi-socket systems of
large sizes, this paper focuses on dual-socket systems. The key in-
sight behind BALM is that, by using MBA and page migration as a
2-dimensional allocation mechanism, we unveil new opportunities
to eliminate SLO violations. To illustrate this claim, Figure 2 depicts
the example from Section 2 in a 2-dimensional perspective. Each
dimension represents the single parameter that tunes each alloca-
tion mechanism: with page migration, the ratio between the local
and remote interleaving weights (yy axis); with MBA, the MBA
level assigned to the BEA (xx axis). The cell values are the BEA’s
speedup over the unshared approach (the top-left configuration).

Recalling the example, the BEA and LCA execute on opposite
sockets. Initially, the LCA is running under a negligible load. Thus,
BALM chooses the configuration that maximizes BEA’s throughput
– it places pages in a local-to-remote ratio of 0.6:0.4, with no MBA
throttling. Later on, the LCA enters a high load phase. Consequently,
some configurations become invalid. These are marked with ’X’ in
Figure 2. Since the initial configuration is invalid, an SLO violation
occurs. Ideally, it should be fixed by quickly transitioning the BEA



from the initial invalid configuration to some configuration that,
among the valid alternatives, maximizes the BEA’s throughput.

The matrix in Figure 2 sheds light on the virtues and limitations
of MBA and page migration when used alone to handle SLO vi-
olations. Using MBA alone restricts the space of available valid
configurations to those located on the same row as the initial con-
figuration; hence, it is fast but will not reach the optimal valid
configuration in this example. In turn, using page migration alone
can only exploit the configurations in the first column; thus, it can
reach the optimal valid configuration, albeit by slow steps.

In contrast, BALM exploits both, MBA and page migration, to
fix the SLO violation by unveiling the entire 2-dimensional configu-
ration space and combining the virtues of each of the mechanisms.
To illustrate this, Figure 2 depicts the path that BALM follows to
solve the SLO violation in our example. This path heals the SLO
violation as quickly as using MBA alone, while eventually reaching
the valid configuration that maximizes the BEA’s throughput (as
page migration does). In a nutshell, BALM fixes the SLO violation
in two steps: first, it sets MBA to the most restrictive level, trying to
fix the violation as fast as possible; next, it incrementally migrates
pages to make the BEA converge to the best local-to-remote ratio.
As the bandwidth demand on the saturated memory node is allevi-
ated after each page migration, BALM gradually releases the MBA
throttling when it observes that doing that still leaves the system
in a valid configuration. We expect BALM to be as quick as MBA in
fixing SLO violations, while converging to the same optimal valid
configuration that the page migration will reach.

Uncertain and dynamic workloads. The 2-dimensional con-
figurationmatrix in Figure 2 is not known a priori, and, furthermore,
its values change dynamically as workload changes. Hence, to find a
valid configuration, BALM resorts to an online hill-climbing search,
which gradually finds its way to the optimal valid configuration
as illustrated in Figure 2. To accomplish this, BALM relies on a
monitoring component, which continuously samples each LCA’s
SLO metrics and provides frequent system-wide diagnostics of the
QoS health of the LCAs; namely, whether any SLO violations are
already happening or prone to happen, and at which sockets they
occur. Such diagnostics feed into the BALM controller, which uses
it to decide when to trigger a new reconfiguration cycle and infer
the outcome of each adaptation action (enforced on a BEA).

Multiple co-located applications. BALM also supports QoS-
aware memory bandwidth allocation in general scenarios where
multiple LCAs and BEAs may be co-located at each socket of the
machine. In such scenarios, BALM monitors the SLO of the ensem-
ble of LCAs at its detection and adaptation stages. if at least one
LCA’s SLO is violated, BALM uses MBA and page migration to
reach a valid configuration in which every LCA in the system has
its SLO met and throughput of BEAs is optimized.

Cross-socket and intra-socket interference. In a general sce-
nario, multiple LCAs may also be running on the same socket as the
BEA. In such scenario, besides SLO violations due to cross-socket
interference, intra-socket interference may also trigger SLO vio-
lations. BALM deals with both situations by choosing the right
page migration direction when healing. Cross-socket interference
is alleviated by remote-to-local migration (i.e., stepping up in Figure
2), whereas intra-socket interference triggers local-to-remote mi-
gration (i.e., stepping down). Furthermore, since the LCAs may be

running at different sockets, using local-to-remote page migration
to fix an intra-socket SLO violation can cause cross-socket SLO vio-
lations and visa versa. To prevent this side effect, BALM collectively
monitors the SLO of every LCA after each page migration step and
rolls back to the previous valid configuration if a new SLO violation
is observed. A consequence of this measure is that, in such complex
scenarios, an optimal valid configuration that totally disables MBA
throttling of the BEA (i.e., MBA 100) may no longer exist.

Multiple noisy neighbours. Finally, one needs to consider that
more than one BEAmay simultaneously enter a bandwidth-intensive
phase, and cause SLO violations. In such scenario, to fix the viola-
tion, BALM throttles memory bandwidth consumption of multiple
BEAs by considering one BEA at a time, starting by those that, in
the near past, have consumed the most memory bandwidth of the
memory node where SLO violations have been detected. To acquire
memory bandwidth usage on a per-socket and per-application ba-
sis, BALM employs the Memory Bandwidth Monitoring feature of
the Intel RDT technology. For each BEA, the 2-dimensional online
search described above is carried out. When the search completes,
BALM has reached either a valid or an invalid configuration. In
the former case, the SLO violations have been healed, and no more
BEAs need to be adapted. In the latter case, the memory bandwidth
diet imposed on the current BEA was not enough to fix the SLO
violations, thus BALM moves to the next BEA in the queue.

4 Evaluation

Our evaluation addresses two key questions: 1.What performance

advantage does BALM bring tomemory-intensive BEAs on dual-socket

NUMA systems? 2. How effective is BALM in fixing SLO violations?

Methodology.We evaluateBALM on a dual-socketmachinewith
two Intel Xeon Silver 4114 CPUs, with 10 cores per CPU, 128GB
DRAM (64GB at each NUMA node), running Linux 4.15. It supports
MBA, with 8 available levels. We compare BALM to MBA (mba)
and page migration (pgm), each used stand-alone; as well as the
unshared and unmanaged approaches (see Section 2). For space lim-
itations, we present the evaluation of BALM for two consolidated
applications, one LCA and one BEA, each on its own socket in a
dual-socket machine. Our complete evaluation has shown, the main
conclusions drawn for the scenario with two applications also hold
in the scenarios with multiple LCAs and BEAs.

As a representative LCA, we use Memcached [5] in our exper-
iments. Our default Memcached deployment is 10 million items,
each with a 30B key and a 200B value; the SLO target is set to 1ms
for 99𝑡ℎ percentile latency, which is in line with the experimental
deployment methodology in previous works (e.g., [3, 8]. We as-
sume that the SLO of Memcached is defined by tail latency (99𝑡ℎ
percentile) of request-to-response latency observed by its clients.

To monitor the SLO of the LCAs, BALM’s monitoring component
keeps a sliding window of all the recent requests that have occurred
in the last 𝑛 seconds and polls the SLO metric, such as tail latency at
𝑚milliseconds interval (which is fine-grained).We configure BALM
with 𝑛 and𝑚 to 3 seconds and 20 ms, respectively. This choice of
parameters allowed the SLO metric to be calculated over large-
enough samples, which reduce measurement noise; while allowing
BALM to react quickly after a sample yields an SLO violation.
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Figure 3: Performance of BEAs and SLO violation time of high-load LCA. The plots show the speedup of BEAs (x-axis) and

SLO violation time of LCA (y-axis) that can be achieved by different mechanisms when LCA is running at the fraction of its

max load indicated by the % values.

For the BEAs, we used memory-intensive multi-threaded bench-
marks from several benchmark suites, i.e., NAS [1], PARSEC [2]
and SPLASH [10]. These benchmarks represent a wide diversity
of application domains which are typically throughput-oriented,
which are also used as such in related works, e.g., [6, 8]. We pin the
threads of each benchmark on the cores allocated to it. All BEAs are
characterized by multiple phases with different memory intensities.
The spikes in Figure 1 illustrate this for Ocean_cp.

Results. Figure 3 presents the results for each metric (BEA per-
formance and LCA SLO violation time) for increasing LCA loads.
As expected, when the LCA runs at a modest load levels, no SLO
violation occurs and the BEA achieves its maximum performance
since it runs with no bandwidth allocation restrictions – regardless
of which mechanism is used. This corresponds to the bottom-right
point at each plot in Figure 3. However, as we increase the LCA load
beyond a critical level (which, depending on the bandwidth inten-
sity of each BEA, ranges between 70% and 90% of max load), QoS
violations arise at increasing frequency and intensity. These trigger
the different mechanisms to allocate less memory bandwidth to the
BEA, thus reducing its throughput.

Figure 3 also makes it evident that, in such high load situations,
each mechanism handles the SLO violations with very distinct
effectiveness. As one increases the LCA load beyond a critical level,
the mba curve quickly expands towards the left-hand extreme of
the plot (i.e., sacrifices the throughput of the offending BEA), while
pgm quickly grows upwards (i.e., taking an increasingly longer
time to heal SLO violations). These trends confirm the preliminary
observations from Section 2. In contrast, BALM’s curves in the
same plots manage to stay closer to the initial optimal point (the
low-load point). Hence, BALM handles increasing LCA loads at
relatively lower costs on both axis. Most importantly, if we chose
a given LCA load and observe how each mechanism performs at
both criteria, then it becomes clear that BALM’s performance on
each axis is typically close to the alternative mechanism that is
best-performing in that axis. For instance, with Ocean_cp, the SLO
violation time of BALM at 80%/90%/100% (resp.) of the LCA’s max

load are just 0%/17%/5% (resp.) above mba’s marginal values. If,
instead, we consider the throughput of Ocean_cp, we conclude that
BALM is just 1%/4%/6% (resp.) below the performance that pgm
achieves on that dimension. This translates to BALM outperforming
mba and unshared by up to 1.78× and 1.4×, resp.. To understand
why BALM does not always achieve the same BEA throughput

as pgm, recall that BALM activates MBA until the page migration
process completes, which temporarily hinders the BEA. The above
results confirm that BALM attains the virtues of each extreme (mba

and pgm), making BALM a well-balanced compromise between
both conflicting criteria.

5 Conclusion

We propose BALM, a QoS-aware memory bandwidth allocation
technique for multi-socket systems. Our evaluation shows that,
compared to state-of-the-art alternatives, BALM ensures marginal
SLO violation windows for latency-sensitive applications while
delivering up to 87% throughput gains to best-effort applications.
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